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Generally, the threshold of percolation in complex networks depends on the underlying structural charac-
terization. However, what topological property plays a predominant role is still unknown, despite the specu-
lation of some authors that degree distribution is a key ingredient. The purpose of this paper is to show that
power-law degree distribution itself is not sufficient to characterize the threshold of bond percolation in
scale-free networks. To achieve this goal, we first propose a family of scale-free networks with the same degree
sequence and obtain by analytical or numerical means several topological features of the networks. Then, by
making use of the renormalization-group technique we determine the threshold of bond percolation in our
networks. We find an existence of nonzero thresholds and demonstrate that these thresholds can be quite
different, which implies that power-law degree distribution does not suffice to characterize the percolation
threshold in scale-free networks.
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I. INTRODUCTION

As one of the best studied problems in statistical physics,
percolation �1� is nowadays also the subject of intense re-
search in the field of complex networks �2�. In a network, if
a fraction of its vertices �nodes, sites� or edges �links, bonds�
is chosen independently with a probability p to be “occu-
pied,” it may undergo a percolation phase transition: when p
is above a threshold value pc, called percolation threshold,
the network possesses a giant component consisting of a fi-
nite fraction of interconnected nodes; otherwise, the giant
component disappears and all nodes disintegrate into small
clusters. So far, percolation in complex networks has re-
ceived considerable attention in the community of statistical
physics �3�, because it is not only of high theoretical interest,
but also relevant to many aspects of networks, including net-
work security �4–7�, disease spread on networks �8–12�, etc.

Since global physical properties of random media alter
substantially at the percolation threshold, which is central to
understanding and applying this process, thus the precise
knowledge of percolation threshold is extremely important
�13�. The issue of determining or calculating the percolation
threshold has been the subject of intense study since the in-
troduction of the model over half a century ago �14,15�. De-
spite decades of effort, there is still no general method for
computing the percolation threshold of arbitrary graphs, and
rigorous solution for the percolation threshold is confined to
some special cases �13,16–18�, such as the Barabási-Albert
�BA� network �19�, two-dimensional lattice, and some other
lattices. In most cases �e.g., lattices in three dimensions or
above�, the percolation threshold is estimated with numerical
simulations, which are often time consuming �20�. Thus,
finding the threshold exactly is essential to investigating the

percolation problem on a particular graph �17�.
Perhaps the main reason for studying percolation in com-

plex networks is to understand how the percolation proper-
ties are influenced by the underlying topological structure. It
has been established that degree distribution has a qualitative
impact on the percolation. Recent studies indicated that in
uncorrelated scale-free networks the percolation threshold is
absent �5,6�. Then a lot of other jobs followed, studying the
influences of other properties on the percolation properties in
scale-free networks; these include degree correlations
�10,21�, clustering coefficient �22�, and so forth. It was found
that degree correlations and clustering coefficient can
strongly affect some percolation properties, but they cannot
restore a finite percolation threshold in scale-free networks.
This raises the question as to whether scale-free degree dis-
tribution is the only ingredient responsible for the absence of
the percolation threshold; in other words, whether power-law
degree distribution suffices to characterize the zero percola-
tion threshold in scale-free networks.

In this paper, we study the effects of power-law degree
distribution on the percolation threshold in scale-free net-
works. To this end, we first construct a class of scale-free
networks with identical degree sequence by introducing a
control parameter q. We then study analytically or numeri-
cally the topological features of the networks and show that
this class of networks has unique topologies. Finally, using
the renormalization-group theory, we investigate analytically
the bond percolation problem in the considered networks and
find the existence of nonzero percolation thresholds depend-
ing on parameter q. Our findings indicate that the degree
distribution by itself is not enough to characterize the perco-
lation thresholds in scale-free networks. On the other hand,
since our networks have the same degree sequence and thus
the same degree distribution, the model proposed here can
serve as a useful tool �substrate model� to check the impact
of power-law degree distribution on the dynamical processes
taking place on top of scale-free networks.
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II. NETWORK CONSTRUCTION AND STRUCTURAL
CHARACTERISTICS

In this section, we study the construction and structural
properties of the networks under consideration, with focus on
degree distribution, clustering coefficient, and average path
length �APL�.

A. Construction algorithm

The proposed networks �graphs� are constructed in an it-
erative way as shown in Fig. 1. Let Ht �t�0� denote the
networks after t iterations. Then the networks are built in the
following way: for t=0, the initial network H0 is two nodes
connected by an edge. For t�1, Ht is obtained from Ht−1.
We replace each existing link in Ht−1 either by a connected
cluster of links on the top right of Fig. 1 with probability q,
or by the connected cluster on the bottom right with comple-
mentary probability 1−q. The growing process is repeated t
times, with the graphs obtained in the limit t→�. Figures 2
and 3 show the growth process of two networks for two
limiting cases of q=0 and q=1, respectively.

Now we compute some related quantities such as the
number of total nodes and edges in Ht, called network order
and size, respectively. Let Lv�t� be the number of nodes gen-
erated at step t, and Et the total number of edges present at

step t. Then Lv�0�=2 and E0=1. By construction �see Fig. 1�,
we have Et=4Et−1=4t �t�0�. On the other hand, each exist-
ing edge at a given step will yield two new nodes at the next
step; this leads to Lv�t�=2Et−1=2�4t−1 �t�1�. Then the
number of total nodes Nt present at step t is

Nt = �
ti=0

t

Lv�ti� =
2

3
�4t + 2� . �1�

The average node degree after t iterations is �k�t=
2Et

Nt
= 3�4t

4t+2
,

which approaches 3 for large t.

B. Degree distribution

When a new node i is added to the networks at a certain
step ti �ti�1�, it has a degree of 2. We denote by ki�t� the
degree of node i at time t. By construction, the degree ki�t�
evolves with time as ki�t�=2ki�t−1�=2t+1−ti. That is to say,
the degree of node i increases by a factor 2 at each time step.
Thus, the degree spectrum of the networks is discrete. In Ht
all possible degree of nodes is 2 ,2223 , . . . ,2t−1 ,2t; and the
number of nodes with degree k=2t+1−m is nk=Lv�m�=4m−1.
Therefore, all the class of networks Ht have the same degree
sequence �thus the same degree distribution� in the full range
of q.

Since the degree spectrum of the networks is not continu-
ous, it follows that the cumulative degree distribution �23� is
given by Pcum�k�=

Nt,k

Nt
, where Nt,k=�k��knk� is the number of

nodes whose degree is not less than k. When t is large
enough, we find Pcum�k��k−2. So the degree distribution
P�k� of the networks follows a power-law form P�k��k−�

with the exponent �=3, independent of q. Notice that the
same degree exponent has been obtained in the famous BA
network �19�.

C. Clustering coefficient

By definition, the clustering coefficient �24� of a node i
with degree ki is given by Ci=2ei / �ki�ki−1��, where ei is the
number of existing triangles attached to node i, and ki�ki
−1� /2 is the total number of possible triangles including i.
The clustering coefficient of the whole network is the aver-
age over all individual Ci�s. By construction, there are no

FIG. 1. Iterative construction method of the networks. Each link
is replaced by either of the connected clusters on the right-hand side
of arrows with a certain probability, where black squares represent
new vertices.

FIG. 2. �Color online� Illustration of the first four evolution
steps of the network growth process for the particular case q=1.

FIG. 3. Sketch of the iteration process of the network for the
particular case of q=0.
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triangles in Ht, so the clustering coefficient of every node
and its average value in Ht are both zero.

D. Average path length

Let dij represent the shortest path length from node i to j,
then the average path length dt of Ht is defined as the mean
of dij over all couples of nodes in the network:

dt =
Dt

Nt�Nt − 1�/2
, �2�

where

Dt = �
i�Ht,j�Ht

i�j

dij �3�

denotes the sum of the shortest path length between two
nodes over all pairs.

For general q, it is difficult to derive a closed formula for
the APL dt of Ht. But for two limiting cases of q=1 and q
=0, both the networks are deterministic, so we can obtain the
analytic solutions for APL.

1. Case of q=1

In the special case �see Fig. 2�, the networks are reduced
to the �1,3�-flower proposed in �25�. This limiting case of the
network has a self-similar structure that allows one to calcu-
late dt analytically. The self-similar structure is obvious from
an equivalent network construction method: to obtain Ht+1,
one can make four copies of Ht and join them in the hub
nodes. As shown in Fig. 4, network Ht+1 may be obtained by
the juxtaposition of four copies of Ht, which are consecu-
tively labeled as Ht

1, Ht
2, Ht

3, and Ht
4. Then we can write the

sum Dt+1 as

Dt+1 = 4Dt + �t, �4�

where �t is the sum of length over all shortest paths whose
end points are not in the same Ht branch.

The paths that contribute to �t must all go through at least
one of the four connecting nodes �i.e., W, X, Y, and Z in Fig.
4� at which the different Ht branches are connected. The
analytical expression for �t, called the length of crossing
paths, is found below.

Denote �t
�,� as the sum of length for all shortest paths

with end points in Ht
� and Ht

�, respectively. If Ht
� and Ht

�

meet at a connecting node, �t
�,� rules out the paths where

either end point is that shared connecting node. For example,
each path contributed to �t

1,2 should not end at node W. If Ht
�

and Ht
� do not meet, �t

�,� excludes the paths where either end
point is any connecting node. For instance, each path con-
tributed to �t

1,3 should not end at nodes W, X, Y or Z. Then
the total sum �t is

�t = �t
1,2 + �t

1,3 + �t
1,4 + �t

2,3 + �t
2,4 + �t

3,4 − 4. �5�

The last term at the end compensates for the overcounting of
certain paths: the shortest path between W and Y, with length
2, is included in �t

1,4 and �t
2,3; the shortest path between X

and Z, also with length 2, is included in both �t
1,2 and �t

3,4.
By symmetry, �t

1,2=�t
1,4=�t

2,3=�t
3,4 and �t

1,3=�t
2,4, so

that

�t = 4�t
1,2 + 2�t

1,3 − 4. �6�

In order to find �t
1,2 and �t

1,3, we define quantity st as

st = �
i�Ht

i�W

diW. �7�

Considering the self-similar network structure, we can
easily know that at time t+1, the quantity st+1 evolves recur-
sively as

st+1 = 2st + �st + �Nt − 1�� + �st + �Nt − 1� − 2�

= 4st +
4

3
�4t − 1� . �8�

Using s1=4, we have

st =
1

9
�4 + 5 � 4t + 3t � 4t� . �9�

On the other hand, by definition given above, we have

�t
1,2 = �

i�Ht
1,j�Ht

2

i,j�W

dij

= �
i�Ht

1,j�Ht
2

i,j�W

�diW + djW�

= �Nt − 1� �
i�Ht

1

i�W

diW + �Nt − 1� �
j�Ht

2

j�W

djW

= 2�Nt − 1� �
i�Ht

1

i�W

diW

= 2�Nt − 1�st. �10�

Continuing analogously,

FIG. 4. Second construction method of the network for q=1
case that highlights self-similarity: The graph after t+1 construction
steps, Ht+1, is composed of four copies of Ht denoted as Ht

� ��
=1,2 ,3 ,4�, which are connected to one another as above.
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�t
1,3 = �

i�Ht
1,i�W,Z

j�Ht
3,j�X,Y

dij

= �
i�Ht

1,i�W,Z

diW	diZ

j�Ht
3,j�X,Y

�diW + dWX + djX�

+ �
i�Ht

1,i�W,Z

diZ	diW

j�Ht
3,j�X,Y

�diZ + dZY + djY�

= 2 �
i�Ht

1,i�W,Z

diW	diZ

j�Ht
3,j�X,Y

�diW + dWX + djX� , �11�

where the symmetry property has been used. After simple
calculations, we obtain

�t
1,3 = 2�Nt − 1�st + �Nt − 1�2 − 2	Nt

2

2

− 2�st + Nt − 3� − 1.

�12�

Substituting Eqs. �10� and �12� into Eq. �6�, we obtain after
simplification

�t =
4

9
�− 2 + 11 � 16t + 6t � 16t� . �13�

Thus

Dt+1 = 4Dt +
4

9
�− 2 + 11 � 16t + 6t � 16t� . �14�

Using D1=8, Eq. �14� is solved inductively,

Dt =
1

27
�8 + 16 � 4t + 3 � 16t + 6t � 16t� . �15�

Inserting Eq. �15� into Eq. �2�, one can obtain the analytical
expression for dt:

dt =
2

3
�

8 + 16 � 4t + 3 � 16t + 6t � 16t

4 � 16t + 10 � 4t + 4
, �16�

which approximates t in the infinite t, implying that the APL
shows a logarithmic scaling with network order. Therefore,
in the case of q=1, the network exhibits a small-world be-
havior. We have checked our analytic result against numeri-
cal calculations for different network order up to t=10 which
corresponds to N10=1 048 577. In all the cases we obtain a
complete agreement between our theoretical formula and the
results of numerical investigation.

2. Case of q=0

For this particular case, our networks turn out to be the
hierarchical lattice introduced in �26�, which is also self-
similar. Using a method similar to but a little different from

that applied in the preceding subsection, we can compute
analytically the average path length dt. We omit the calcula-
tion process and give only the exact expression as below:

dt =
22 � 2t � 16t + 8t�21t + 42� + 27 � 4t + 98 � 2t

42 � 16t + 105 � 4t + 42
.

�17�

Equation �17� recovers the previously obtained result in �27�
and has been confirmed by extensive numerical simulations.
In the large t limit, dt�

11
212t. On the other hand, for large t

limit, Nt�4t, so dt grows as a square root of the number of
network nodes. Thus, in the case of q=0, the network exhib-
its a “large-world” behavior of typical node-node distances.

3. Case of 0	q	1

For 0	q	1, in order to obtain the variation of the aver-
age path length with the parameter q, we have performed
extensive numerical simulations for different q between 0
and 1. Simulations were performed for network N7 with or-
der 10 924, averaging over 20 network samples for each
value of q. In Fig. 5, we plot the average path length as a
function of q. We observe that, when q increases from 0 to 1,
the average path length drops drastically from a very high
value to a small one, which shows that there is a crossover
between small-world and large-world. This behavior is simi-
lar to that in the Watts-Strogatz �WS� model �24�.

III. THRESHOLD OF BOND PERCOLATION

As discussed in Sec. II, the networks exhibit many inter-
esting properties, i.e., they have the same degree sequence
independent of parameter q; they are scale-free and nonclus-
tered; and they display a crossover between large-world and
small-world. All these features are not shared simultaneously
by any previously reported networks. Hence, it is worthwhile
to investigate the processes taking place upon the model to
find the different impact on dynamic processes compared
with other networks such as the BA network. In what follows

FIG. 5. Graph of the dependence of the average path length on
the tunable parameter q.
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we will study bond percolation, which is one of the most
important issues in statistical physics �1�.

In bond percolation every bond �link or edge� on a speci-
fied graph is independently either “occupied” with probabil-
ity 
, or not with the complementary probability 1−
. In our
case the percolation problem can be solved using the real-
space renormalization-group technique �28–32�, giving exact
solution for the interesting quantity of percolation threshold.
Let us describe the procedure in application to the network
considered. Assuming that the network growth stops at a
time step t→�, when the network is spoiled in the following
way: for a link present in the undamaged network, with the
probability 
 we retain it in the damaged network. Then we
invert the transformation in Fig. 1 and define n= t−� for this
inverted transformation, which is actually a decimation pro-
cedure �31�. Further, we introduce the probability 
n that if
two nodes are connected in the undamaged network at �= t
−n, then at the nth step of the decimation for the damaged
network, there exists a path between these vertices. Here,

0=
. We can easily obtain the following recursion relation
for 
n:


n+1 = q�
n + 
n
3 − 
n

4� + �1 − q��2
n
2 − 
n

4� . �18�

Equation �18� has four roots �i.e., fixed points�, among
which the root 
=− 1−q

2 − 1
2
�5−6q+q2 is invalid, because it is

less than 0. The other three fixed points are as follows: two
stable fixed points at 
=0 and 
=1, and an unstable fixed
point at 
c that is the percolation threshold. The reason for
the unstable fixed point corresponding to the threshold is as
follows: at any 0	
0	
c, 
n approaches 0 as n→�, which
means there is no percolation; while at any 
c	
0	1, 
n
approach 1, indicating an existence of the percolating cluster.

The exact expression of 
c as a function of q is


c = −
1 − q

2
+

1

2
�5 − 6q + q2. �19�

Interestingly, for the case of q=0, 
c is equal to
�5−1

2 , which
is the inverse of the golden ratio � ��=

�5+1
2 � and is the same

value as the site percolation threshold for the “B” lattice
discussed in �16,17�. We present the dependence of 
c on q
in Fig. 6, which indicates that the threshold 
c decreases as q
increases. When q grows from 0 to 1, 
c decreases from
�5−1

2 �0.618 to 0.
Thus, in a large range of parameter q �i.e., q	1�, there

exists a critical nonzero percolation threshold 
c such that for



c a giant component appears spanning the entire net-
work, and for 
	
c there are only isolated small clusters.
The existence of percolation thresholds in our networks is in
sharp contrast with the null threshold found in a wide range
of previously studied scale-free networks �5,6,10,21,22�.

Note that since the susceptible-infected-removed �SIR�
model can be mapped to the bond percolation problem
�8–10�, for the SIR model on our networks the epidemic
prevalence undergoes a phase transition at a finite threshold

c of the transmission probability. If infection rate is above

c, the disease spreads and infects a finite fraction of the
population. On the contrary, when infection rate is below 
c,
the total number of infected individuals is infinitesimally

small in the limit of very large populations. The existence of
epidemic thresholds in the present networks is compared to
the result for some other scale-free networks, where arbi-
trarily small infection rate shows finite prevalence �33�.

From Eq. �19�, one can see that for different q, the net-
works have distinct percolation thresholds. As known from
Sec. II, the whole class of the networks exhibits identical
degree sequence �power-law degree distribution� and �zero�
clustering coefficient, which shows that degree distribution
and clustering coefficient are not sufficient to characterize
the threshold of bond percolation in scale-free networks. One
may ask why the considered networks have disparate perco-
lation thresholds. We speculate that the diverse thresholds in
our networks lie with the average path length, which needs
further confirmation in the future.

IV. CONCLUSIONS

We have demonstrated that power-law degree distribution
alone does not suffice to characterize the percolation thresh-
old on scale-free networks under bond percolation. To this
end, by introducing a parameter q, we have presented a fam-
ily of scale-free networks with the same degree sequence and
�zero� clustering coefficient. We provided a detailed analysis
of the topological features and showed that the model exhib-
its a rich structural behavior. In particular, using a renormal-
ization method, we have derived an exact analytic expression
for the thresholds of bond percolation in our networks. We
found that finite thresholds are recovered for our networks in
the case of q	1, which is in contrast to the conventional
wisdom that null percolation threshold is an intrinsic nature
of scale-free networks. Therefore, care should be needed
when making general statements about the percolation prob-
lem in scale-free networks.

It should be mentioned that the model generation of scale-
free networks with the same degree sequence is a very com-
mon problem in complex network research. Actually, in the
study of the impacts of other characteristics �besides degree
distribution� of scale-free networks on the dynamical pro-
cesses defined on the networks, the interference of power-

FIG. 6. The dependence relation of percolation threshold 
c on
the parameter q.
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law degree distribution should be avoided. In this case, such
a model is necessitated. Traditionally, the interchanging al-
gorithm �through rewiring two links between four end
points� is frequently used to achieve this goal �34�. But this
algorithm may lead to disconnection of the whole network.
We have shown that the scale-free networks proposed here
have identical degree sequence and are always connected. So
our networks can overcome above deficiency. They may be
helpful for investigating how other features �say, average
path length�, other than power-law degree distribution, are
relevant to the performance of scale-free networks.

Finally, we stress that since we were only concerned with
the percolation phase transition point, we merely gave the
exact position of the percolation thresholds, omitting some
other properties of bond percolation, such as the value of the
critical exponents governing behavior close to the transition,
the complete distribution of the cluster sizes, and closed-
form expressions for the mean and variance of the distribu-

tion. All these are worth studying further in the future, which
is beyond the scope of this paper.

Note added. A relevant publication �35� about bond per-
colation has come to our attention, where the authors showed
that different percolation thresholds exist for different net-
works having the same degree distribution �not degree se-
quence as addressed in this present paper�.
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